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Critical states and fractal attractors in fractal tongues: Localization in the Harper map
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Localized states of Harper’s equation correspond to strange nonchaotic attractors in the related Harper
mapping. In parameter space, these fractal attractors with nonpositive Lyapunov exponents occur in fractally
organized tongue-like regions which emanate from the Cantor set of eigenvalues on the critical linee51. A
topological invariant characterizes wave functions corresponding to energies in the gaps in the spectrum. This
permits a unique integer labeling of the gaps and also determines their scaling properties as a function of
potential strength.
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The Harper equation@1#,

cn111cn211V~n!cn5Ecn , ~1!

where cn denotes the wave function at lattice siten, and
V(n)52e cos 2p(nv1f0) with v irrational, has been exten
sively studied in the context of localization. This discre
Schrödinger equation for a particle in a quasiperiodic pote
tial on a lattice, arises in a number of different problem
@2,3#. It is known @4# that the eigenstates can be extend
(e,1), localized (e.1), or critical (e51[ ec), when the
eigenvalue spectrum is singular-continuous@5#, and the
states are power-law localized@6#. Renormalization group
studies@7–9# of this model have been very effective in e
tablishing the multifractal nature of the wave functions
such states and of the eigenvalue spectrum@10#.

Through the transformationcn21 /cn→xn , Eq. ~1! re-
duces to the~equivalent! Harper map@11#

xn1152@xn2E12e cos 2pfn#21, ~2!

fn115$v1fn%, ~3!

where$y%[y mod 1, andn is now the time or iteration in-
dex. Viewed as a skew-product dynamical system, this
now a driven mapping of the infinite strip (2`,`) ^ @0,1# to
itself. Irrationalv implies that the forcing in Eq.~2! is qua-
siperiodic.

The Harper map, which we study in this Rapid Comm
nication, provides an alternate means of analyzing the eig
value spectrum of the Harper equation. Boundary conditi
that must be imposed on Eq.~1! in order to determine eigen
states become conditions on the dynamical states in the m
Eqs. ~2! and ~3!, whereE now appears as a parameter. A
though there is no chaotic motion since the map is reversi
for large enoughe, the attractor of the dynamics is a fract
@11#. On this attractor, the dynamics is nonchaotic@12#: these
are therefore strange nonchaotic attractors~SNAs! @13# that
are generic in quasiperiodically forced systems. There are
periodic orbits, but there can be a variety of other nonfrac
quasiperiodic~torus! attractors.

WhenE is an eigenvalue, a correspondence relates lo
ized states of the quantum problem to SNAs in the associ
map, an equivalence first noted by by Bondeson, Ott,
Antonsen@14# in a study of the continuous version of th
1063-651X/2001/64~4!/045204~4!/$20.00 64 0452
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same problem. The wave functions for critical and extend
states have a quasiperiodic symmetry@12#, while the fractal
fluctuations of the amplitudes of the localized states@9# ap-
pear as fractal density fluctuations in the attractors of
map. The nontrivial Lyapunov exponent of the system
given by l5 limN→` 1/N( i 51

N ln xn11
2 . At ec , if E is an ei-

genvalue of the quantum problem, then this quantity is
actly zero@12#; see Fig. 1. Aboveec , the localization length
for quantum statesg is inversely related to the Lyapuno
exponent@4# l2152g/2. Knowledge of this equivalence
thus permits the complete determination of the quant
spectrum of the Harper system through a study of
Lyapunov exponents of the Harper map. At every eigenva
~Fig. 1!, there is a bifurcation from a quasiperiodic attract
to a SNA when the Lyapunov exponent becomes zero.

The spectrum of the Harper equation is invariant un
the transformationv→12v, and is symmetric aboutE50,
so it suffices to consider only positive eigenvalues andv
.1/2. The behavior of the spectralgapshas been of consid
erable interest@3#, and we study this here by describing th
phase diagram of this system forv5vg5(A521)/2, the
inverse golden-mean ratio.

At e50, the states of the quantum system form a ba
between energies 0<E<2. As e is increased, the gaps ope
up and merge ase→ec , giving a singular continuous spec

FIG. 1. The integrated density of states~IDS! ~scale on the
right! and Lyapunov exponent (l) ~scale on the left! versus energy
at ec . The gap labelsk are indicated for the largest visible gaps. A
every bifurcation, whenl50, the dynamics is on a SNA. On th
gaps, the IDS takes the constant valueVk , specified by Eq.~4!.
©2001 The American Physical Society04-1
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trum. Belowec , when the states are extended, the dynam
of the classical system is on ‘‘three-frequency’’ quasipe
odic orbits @14# with the Lyapunov exponent equal to 0
Aboveec , localized states correspond to SNAs with a ne
tive Lyapunov exponent@see Fig. 2~a! for an example#, while
critically localized states atec are exceptional and corre
spond to SNAs with a zero Lyapunov exponent@12#. For
energies in the gaps,l,0, and the motion is on two
frequency quasiperiodic~one-dimensional! attractors@an ex-
ample is shown in Fig. 2~b!#, which wind across the (x,u)
plane an integral number of times. Wave functions of Eq.~1!
at these energies do not satisfy the appropriate boundary
ditions and are non-normalizable. The number of windin
of the corresponding attractorN is a topological invariant for
all orbits in the gaps. This integer index for each gap@15#
counts the number of changes of sign~per unit length! of the
wave function, and is thus related to the integrated densit
states~IDS! @16#. The gap-labeling theorem@16# states that
each gap can be labeled by the value that the IDS take
the gap; in the Harper system, this is also the winding nu
ber @15#, and~for E>0) on the gap labeled by the indexN,
this takes the value

VN~E!5max~$Nv%,12$Nv%!. ~4!

The symmetrically located gap withE<0 with indexN has
the winding numberVN(E)5min($Nv%,12$Nv%).

There is thus a 1–1 correspondence between the gaps
the integers. Furthermore, since the IDS is a continuous n
decreasing curve, it is possible to specify the gap order
this depends on the continued fraction representation ov.
This latter problem earlier studied by Slater@17#, is also
encountered in the context of level statistics of tw
dimensional harmonic oscillator systems@18#. Consider the
numbersyj5$ j v%, j 51,2, . . . ,m. For any v and anym, it
has been shown@17,18# that an ‘‘ordering function’’ can be
defined, giving a permutation of the indices,j 1 , j 2 , . . . ,j m ,
such thatyj i

<yj k
if i ,k. This result can be directly adapte

to the present problem to give the complete ordering of
labels withE @19#.

FIG. 2. ~a! A strange nonchaotic attractor fore52, E53. ~b!
The attractor for a value ofE corresponding to the gapN55, hav-
ing five branches that traverse the range2`,x,`.
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The resulting structure of the gaps can be described v
simpler construction for the case of v5vg
[ limk→` Fk21 /Fk , where the Fibonacci numbersFk are de-
fined by the recursionFk115Fk211Fk , with F051,F1
52. Consider a Cayley tree, shown in Fig. 3, rooted at
origin which is labeled 0. Nodes at the same horizontal le
are at the same generation. The rightmost node at each
eration is labeled by successive Fibonacci integers, while
leftmost are half the successive even Fibonacci integers.
a given non-Fibonacci numberm, the parent nodei m is the
smallest available such that the sum (i m1m) is a Fibonacci
number. Subsidiary number-theoretic properties help in
termining the placement of all integers on the tree.

Every pair of integers,i 1 and i 2, with i 2. i 1, has two
possibilities as to how they are relatively placed on t
graph. Either~i! i 1 is an ancestor ofi 2, i.e., there is a directed
path connectingi 2 to i 1. If this path is to the left at nodei 1,
theni 2a i 1. ~If to the right, theni 1a i 2.! or ~ii ! i 0 is the most
recent common ancestor ofi 1 andi 2. If the path fromi 0 to i 1
is on the left ati 0, theni 1a i 2. ~Similarly, if it is to the right,
then i 2a i 1.!

This gives a unique ordering of the integers~see Fig. 3!
with the relationa being transitive~if i a j and j am then
i am),

. . . 4a . . . a9a . . . a1a2a . . . a11a . . . a0.

The gaps appear inpreciselythis order: ifkak8, then gap
k precedes gapk8 in the positive energy spectrum of th
critical Harper map@Fig. 1#. Following the procedure that is
described in detail in@18#, similar Cayley trees can be con
structed for any other irrational frequency. For eachv, de-
pending on its continued fraction representation, there
unique reordering of the integers corresponding to the ord
ing of the gaps.

Each gap is characterized by its widthwm and by its depth
dm , both of which are functions ofe. The depth has no
obvious quantum-mechanical interpretation,2dm merely be-

FIG. 3. Ordering of the gaps forv5vg the golden mean. Only
part of the Cayley tree described in the text is shown for clar
Each node has two daughters except for the root 0.
4-2
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ing the minimum value that the Lyapunov exponent takes
the mth gap. We find empirically thatdN;1/NeN @shown in
Fig. 4~a! at e51#. The behavior of the gap widths is mor
complicated and depends on the details of the Cayley t
The widths are nonmonotonic as a function of gap index,
come in families: gaps belonging to a given family scale a
power,wN;1/Nu. The fastest decreasing are the Fibona
gaps,1,2,3,5,8, . . . ,Fk , . . . (u[u r'2.3), while the slow-
est is the family1,4,17, . . . ,F113k/2, . . . (u[u l'1.88):
these are, respectively, the successive rightmost and left
nodes on the Cayley tree in Fig. 3@see Fig. 4~b!#. Other
families, which can be similarly defined on subtrees, a
obey scaling, with exponents betweenu l andu r . When the
gaps are ordered by rankr, then they scale aswr;1/r 2: this
is consistent with the previously~numerically! obtained@3#
gap distributionr(s);s23/2, which has also been derive
exactly through the Bethe ansatz@20#.

Aboveec , the states are exponentially localized and ha
the same localization length or Lyapunov exponent@4#. The
gaps that dominate the spectrum atec , persist for largere,
but decrease in width according to the~empirical! scalings
@see Fig. 4~b!#,

FIG. 4. ~a! Scaling of the gap widths,wN (d), and depthsdN

(L), as a function of gap indexN at e 5 ec . The depths have bee
multiplied by a factor of 10 for clarity, and the dashed line has slo
21. The dotted lines show the scaling of the widths for two fam
lies of gaps; see the text for details.~b! Scaling of the gap widths
wN for the largest few gaps as a function ofe aboveec . The solid
lines are the power laws given in Eq.~5!.
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NueN21 ~5!

~where u is particular to the family to which the gap be
longs!.

The dynamics of the Harper map corresponding to loc
ized states is on SNAs@11#, while that in the gaps continue
to be on one-dimensional attractors similar to those be
ec . However, since the gaps decrease in width, most of
dynamics is now on SNAs. By continuity, therefore, th
SNA regions must start at each eigenvalue atec , and widen
gradually, since for largee the spectrum lies in the range
<E<2e. A phase-diagram for this system in theE-e plane
is shown schematically in Fig. 5. The dynamics is entirely
fractal attractors with a negative Lyapunov exponent in
tonguelike regions, each of which starts at an eigenvalu
ec . The fractal ~Cantor set! spectral structure is thus re
flected in the hierarchically organized fractal ‘‘tongues.’’

The equivalence between the Harper equation and
Harper map thus provides a new mode of analysis of
problem which arises in numerous contexts@1–7#. The sin-
gular continuous nature of the eigenvalue spectrum, wh
has been the subject of considerable theoretical study,
been detected in experiments@21# as well, and therefore an
understanding of the gap widths and their variation with e
ergy and potential strength is of importance. The pres
technique gives a simple, but powerful method for the stu
of the spectrum to a finer level of detail than has hithe
been available. In this problem the details arecrucial: al-
though the spectrum of the Harper equation atec is a Cantor
set, the gaps may be labeled through a topological invar
of orbits of the Harper map that is related to previously d

e
-

FIG. 5. Phase diagram for the Harper map. Belowec ~the dotted
vertical line! there are three-frequency quasiperiodic~Q! orbits or
extended states, 1-d attractors or gaps~G!, and aboveec , SNAs~S!
and gaps~G!. Only the largest gaps are visible at this scale. All ga
persist aboveec , decreasing in width according to Eq.~5!. The
measure of the SNA region~shaded! increases withe, as does the
range of the spectrum.
4-3



tio
e
o
te

the
on-
or-

t of
fited

RAPID COMMUNICATIONS

SURENDRA SINGH NEGI AND RAMAKRISHNA RAMASWAMY PHYSICAL REVIEW E64 045204~R!
scribed rotation numbers for such systems@15# and to the
integrated density of states@16#. The ordering of the gaps
depends on number-theoretic properties of particular irra
nal frequencyv @17,19#, while the gap indices determine th
exponents for the scaling of gap widths as a function
potential strength. The phase diagram for the Harper sys
will consist of fractal tongues for all irrational frequenciesv,
,
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e
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and in the tongues, the dynamics of the Harper map is on
SNAs. The ubiquity of such attractors and their corresp
dence with localized states further underscores their imp
tance@11,12#.
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