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Critical states and fractal attractors in fractal tongues: Localization in the Harper map
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Localized states of Harper's equation correspond to strange nonchaotic attractors in the related Harper
mapping. In parameter space, these fractal attractors with nonpositive Lyapunov exponents occur in fractally
organized tongue-like regions which emanate from the Cantor set of eigenvalues on the critiead 1iné
topological invariant characterizes wave functions corresponding to energies in the gaps in the spectrum. This
permits a unique integer labeling of the gaps and also determines their scaling properties as a function of
potential strength.
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The Harper equatiofi], same problem. The wave functions for critical and extended
states have a quasiperiodic symmdtt], while the fractal
Unr1t a1+ V(N P=Edy, (D fluctuations of the amplitudes of the localized std@sap-

pear as fractal density fluctuations in the attractors of the
map. The nontrivial Lyapunov exponent of the system is
given by A =limy_., IINZN , Inx2,,. At €, if E is an ei-

genvalue of the quantum problem, then this quantity is ex-

where ¢, denotes the wave function at lattice site and
V(n)=2e cos 2r(nw+ ¢g) With w irrational, has been exten-
sively studied in the context of localization. This discrete

Schralinger equation for a particle in a quasiperiodic poten- ] X o
tial on a lattice, arises in a number of different problemsaCtIy zero[12]; see Fig. 1. Above, the localization length

[2,3]. It is known [4] that the eigenstates can be extendeofor quantum st_altegf is inversely related to_ the Lyapunov
(e<1), localized €>1), or critical e=1= ¢,), when the cXPonent[4] A “=—y/2. Knowledge of this equivalence
eigenvalue spectrum is singular-continuof&, and the thus permits the complete determination of the quantum
states are power-law localizd@]. Renormalization group spectrum of the Harper system through a stud_y of the
studies[7—9] of this model have been very effective in es- Lyapunov exponents of th_e Harper map. At every eigenvalue
tablishing the multifractal nature of the wave functions of(F'g' D, there is a bifurcation from a quasiperiodic attractor
such states and of the eigenvalue spectfuify. to a SNA when the Lyapunov exponent becomes zero.
Through the transformation, 1/, —x,, Eq. (1) re- The spectrum of the Harper gquanon is invariant under
duces to théequivalent Harper mag11] the transformatiomw— 1— w, and is symmetric abolE=0,
so it suffices to consider only positive eigenvalues and

Xni1=—[X,—E+2ecos2me,] L, 2) >1/2. The behavior of the spectrgapshas been of consid-
erable interesf3], and we study this here by describing the
bni1={o+ dp}, €©)] phase diagram of this system far= wg=(\/§— 1)/2, the
inverse golden-mean ratio.
where{y}=ymod 1, andn is now the time or iteration in- At €=0, the states of the quantum system form a band

dex. Viewed as a skew-product dynamical system, this isetween energiesOE<2. As € is increased, the gaps open
now a driven mapping of the infinite strip{(~,*)®[0,1]to  up and merge as— €., giving a singular continuous spec-
itself. Irrationalw implies that the forcing in Eq.2) is qua-
siperiodic. : 1.00

The Harper map, which we study in this Rapid Commu-
nication, provides an alternate means of analyzing the eigen-
value spectrum of the Harper equation. Boundary conditions
that must be imposed on E(.) in order to determine eigen-
states become conditions on the dynamical states in the map,
Egs. (2) and (3), whereE now appears as a parameter. Al-
though there is no chaotic motion since the map is reversible,
for large enougkte, the attractor of the dynamics is a fractal
[11]. On this attractor, the dynamics is nonchati2]: these
are therefore strange nonchaotic attract@slAs) [13] that
are generic in quasiperiodically forced systems. There are no
periodic orbits, but there can be a variety of other nonfractal

quasiperiodiqtorus attractors. FIG. 1. The integrated density of staté®S) (scale on the
WhenE is an eigenvalue, a correspondence relates locakight) and Lyapunov exponeni{ (scale on the leftversus energy
ized states of the quantum problem to SNAs in the associatest ¢, . The gap label are indicated for the largest visible gaps. At
map, an equivalence first noted by by Bondeson, Ott, andvery bifurcation, when.=0, the dynamics is on a SNA. On the
Antonsen[14] in a study of the continuous version of the gaps, the IDS takes the constant vafdig, specified by Eq(4).
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FIG. 2. (a) A strange nonchaotic attractor fe=2, E=3. (b)
The attractor for a value d& corresponding to the gag=>5, hav-
ing five branches that traverse the range <x<o. FIG. 3. Ordering of the gaps fas= w4 the golden mean. Only

part of the Cayley tree described in the text is shown for clarity.
trum. Belowe,, when the states are extended, the dynamic&ach node has two daughters except for the root 0.
of the classical system is on “three-frequency” quasiperi-
odic orbits [14] with the Lyapunov exponent equal to 0.  The resulting structure of the gaps can be described via a
Above €., localized states correspond to SNAs with a negasimpler  construction  for the case of w=wy

tive Lyapunov exponerisee Fig. 2a) for an examplg while ~ =lim,_.. F,_,/F,, where the Fibonacci numbeffg are de-
critically localized states at, are exceptional and corre- fined by the recursiorFy, =F,_1+F,, with Fo=1F;
spond to SNAs with a zero Lyapunov expongmP]. For ~ =2. Consider a Cayley tree, shown in Fig. 3, rooted at the

energies in the gaps\<0, and the motion is on two- origin which is labeled 0. Nodes at the same horizontal level
frequency quasiperiodi@ne-dimensionalattractordan ex- ~ are at the same generation. The rightmost node at each gen-
ample is shown in Fig. ®)], which wind across thex(6) eration is labeled by successive Fibonacci integers, while the
plane an integral number of times. Wave functions of @j.  leftmost are half the successive even Fibonacci integers. For
at these energies do not satisfy the appropriate boundary coa-given non-Fibonacci numben, the parent node,, is the
ditions and are non-normalizable. The number of windingssmallest available such that the suip,{ m) is a Fibonacci

of the corresponding attractdfis a topological invariant for number. Subsidiary number-theoretic properties help in de-
all orbits in the gaps. This integer index for each ¢ap]  termining the placement of all integers on the tree.

counts the number of changes of siger unit length of the Every pair of integersj; andi,, with i,>i,, has two
wave function, and is thus related to the integrated density ofossibilities as to how they are relatively placed on this
states(IDS) [16]. The gap-labeling theorefi6] states that graph. Eithei) i, is an ancestor df,, i.e., there is a directed
each gap can be labeled by the value that the IDS takes guath connecting, to i,. If this path is to the left at nodi,

the gap; in the Harper system, this is also the winding numtheni,<i,. (If to the right, theni;<i,.) or (ii) ig is the most
ber[15], and(for E=0) on the gap labeled by the indék  recent common ancestor igfandi.,. If the path fromigtoi,

this takes the value is on the left at, theni<i,. (Similarly, if it is to the right,
theni,<i;.)
Qn(E)=max{Nw},1—{Nw}). (4) This gives a unique ordering of the integésee Fig. 3

with the relation< being transitive(if i<j and j<m then
The symmetrically located gap with<0 with indexN has  i<m),
the winding numbef) \(E) = min((Nw},1—{Nw}).

There is thus a 1-1 correspondence between the gapsand . 4< ... <9< ... <1<2< ...<11<...<0.

the integers. Furthermore, since the IDS is a continuous non-
decreasing curve, it is possible to specify the gap ordering: The gaps appear ipreciselythis order: ifk<k’, then gap
this depends on the continued fraction representatiom.of i precedes gajx’ in the positive energy spectrum of the
This latter problem earlier studied by Slate7], is also  critical Harper magFig. 1]. Following the procedure that is
encountered in the context of level statistics of two-described in detail ifi18], similar Cayley trees can be con-
dimensional harmonic oscillator systerfi8]. Consider the  strycted for any other irrational frequency. For eaghde-
numbersy;={jw},j=1,2,... m. For any o an_d anym, it pending on its continued fraction representation, there is a
has been show[i7,18 that an “ordering function” can be ynjque reordering of the integers corresponding to the order-
defined, giving a permutation of the indicgs,js, ... .Jjm, ing of the gaps.
such thalyjl$yjk if i <k. This result can be direCtly adapted Each gap is characterized by its W|d’r‘ﬂ1 and by its depth
to the present problem to give the complete ordering of gal,,,, both of which are functions ot. The depth has no
labels withE [19]. obvious quantum-mechanical interpretatierd,,, merely be-
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FIG. 4. (a) Scaling of the gap widthsyy (@), and depthsly
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FIG. 5. Phase diagram for the Harper map. Bekithe dotted
vertical line there are three-frequency quasiperiod@® orbits or
extended states, d -attractors or gap&G), and aboves., SNAs(S)
and gapgG). Only the largest gaps are visible at this scale. All gaps
persist abovee;, decreasing in width according to E¢p). The
measure of the SNA regiofshadedl increases withe, as does the

range of the spectrum.

(©), as a function of gap indelX at e = ¢.. The depths have been longs

multiplied by a factor of 10 for clarity, and the dashed line has slope
—1. The dotted lines show the scaling of the widths for two fami-
lies of gaps; see the text for detail®) Scaling of the gap widths
wy, for the largest few gaps as a function ©fbovee.. The solid

lines are the power laws given in E).

the mth gap. We find empirically thady~ 1/Ne [shown in

1

N NI

©)

(where 6 is particular to the family to which the gap be-

The dynamics of the Harper map corresponding to local-
ized states is on SNA4. 1], while that in the gaps continues

to be on one-dimensional attractors similar to those below
€.. However, since the gaps decrease in width, most of the

dynamics is now on SNAs. By continuity, therefore, the
ing the minimum value that the Lyapunov exponent takes irSNA regions must start at each eigenvalueatand widen

gradually, since for large the spectrum lies in the range 0

Fig. 4@ at e=1]. The behavior of the gap widths is more <E<2e. A phase-diagram for this system in tkee plane
complicated and depends on the details of the Cayley treés shown schematically in Fig. 5. The dynamics is entirely on
The widths are nonmonotonic as a function of gap index, bufractal attractors with a negative Lyapunov exponent in the
come in families: gaps belonging to a given family scale as aonguelike regions, each of which starts at an eigenvalue at
power, wy~ 1/N?. The fastest decreasing are the Fibonaccie,. The fractal (Cantor set spectral structure is thus re-

gaps,1,2,3,5,8... F, ..

. (= 6,~2.3), while the slow-
est is the familyl,4,17 ... F1,3/2,... (6=6,~1.88):

flected in the hierarchically organized fractal “tongues.”
The equivalence between the Harper equation and the

these are, respectively, the successive rightmost and leftmolfarper map thus provides a new mode of analysis of this

nodes on the Cayley tree in Fig.[3ee Fig. 4b)]. Other

problem which arises in numerous conteixts-7]. The sin-

families, which can be similarly defined on subtrees, alsaular continuous nature of the eigenvalue spectrum, which

obey scaling, with exponents betweénand 6, . When the
gaps are ordered by ramkthen they scale as,~ 1/r?: this
is consistent with the previouslnumerically obtained[3]

has been the subject of considerable theoretical study, has
been detected in experimentl] as well, and therefore an
understanding of the gap widths and their variation with en-

gap distributionp(s)~s~%? which has also been derived ergy and potential strength is of importance. The present
technique gives a simple, but powerful method for the study

Above €., the states are exponentially localized and haveof the spectrum to a finer level of detail than has hitherto

exactly through the Bethe ansd&0].

the same localization length or Lyapunov exporeht The
gaps that dominate the spectrumegt persist for largere,
but decrease in width according to tempirica) scalings

[see Fig. 4b)],

been available. In this problem the details arecial: al-
though the spectrum of the Harper equatior ais a Cantor
set, the gaps may be labeled through a topological invariant

of orbits of the Harper map that is related to previously de-
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scribed rotation numbers for such systef§] and to the and in the tongues, the dynamics of the Harper map is on the
integrated density of statgdd6]. The ordering of the gaps SNAs. The ubiquity of such attractors and their correspon-

depends on number-theoretic properties of particular irratiodence with localized states further underscores their impor-
nal frequencyw [17,19, while the gap indices determine the tance[11,12.

exponents for the scaling of gap widths as a function of This research has been supported by the Department of

potential strength. The phase diagram for the Harper systei8cience and Technology, India. We have especially benefited
will consist of fractal tongues for all irrational frequencies  from correspondence with Jean Bellisard.
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